GPS devices that include 3G communication chips
With the current technology, tracking and tracing usually requires an additional GPS antenna to determine the precise location, as the position information from the GSM network is too fuzzy to provide accurate location data. Also communication with mobile units is often established by Short Message Service (SMS), with a fixed fee associated with every query. There is no permanent flow of data communications (SMS is not an “always on” service) between the field staff and the base—and every query incurs relevant cost. With the evolvement of 3G networks, there is an expectation of change in the infrastructure or rather; there have already been some changes. 3G will allegedly provide “always on” data communication at high speed, which will enable easy and quick queries at any time, even continuous tracking and tracing. It is also assumed that this service will be at a comparatively lower rate.
The major enhancements to be expected from GPS 3G mobile services are directly linked to new kinds of services, to be widely offered, such as: (a) various communications services (such as enhanced voice quality, fax, e-messaging); (b) multiple information services (such as news, weather reports, sports information, lottery results, stock exchange, etc.); (c) specific financial services (such as online banking and shopping, ticketing, e-payments); (d) enhanced business services such as virtual office, corporate Internet, etc.; (e) a variety of entertainment services (such as video and music on-demand and electronic games); (f) innovative transport-related services such as in-car real-time navigation (GPS), traffic information, etc. In particular, such an option is expected to contribute, significantly, to the development procedures of modern economies.
The 3G systems will include a location service, so one natural terminal type for 3G is a navigation device. There already exists at least one attempt to provide something like this, namely the Esc! phone from Benefon. It includes a big display, and it can download maps from the network. The location of the phone can be seen from the displayed map. In the future we will also see electronic tracking device that include 2G or 3G communication chips. Navigational devices can take many forms. A hiker in the forest would probably want to have a small lightweight navigation device with only the basic voice call functionality. When outside the 3G coverage, the location data could be provided by the GPS system. Hikers often have specialized needs for their map applications, which are served well with modern GPS terminals. A truck may also include a tracking device that monitors the movements of the vehicle and provides a navigation aid for the driver. Here the weight or the power consumption of the device is not an issue, but the device has to be easy to use. It should not disturb the driver in his main task, which is driving. All such functions, which can be automated, should be implemented. Any necessary input to the device should be done in a way that does not require unnecessary work, for example, via speech recognition.
Most passenger cars will probably include some kind of navigation device in a few years’ time. Similarly here, the weight, the size, or the power consumption of the device is not an issue. The same device probably scans for all traffic announcements from the radio waves, as well as from 3G cell broadcast service (CBS). If traffic jams are detected, the device proposes an alternative route. All input should be possible via speech recognition, and possibly also the output via speech generation. It will be possible to make hands-free voice calls via this device. The existence of special navigation terminals does not exclude the use of navigation applications in standard mainstream terminals. But for certain special needs, a purpose-built navigation terminal is probably the right solution. Privacy issues must be solved before tracking devices for people enter widespread use. Who has the right to access the location data and when?
The major enhancements to be expected from GPS 3G mobile services are directly linked to new kinds of services, to be widely offered, such as: (a) various communications services (such as enhanced voice quality, fax, e-messaging); (b) multiple information services (such as news, weather reports, sports information, lottery results, stock exchange, etc.); (c) specific financial services (such as online banking and shopping, ticketing, e-payments); (d) enhanced business services such as virtual office, corporate Internet, etc.; (e) a variety of entertainment services (such as video and music on-demand and electronic games); (f) innovative transport-related services such as in-car real-time navigation (GPS), traffic information, etc. In particular, such an option is expected to contribute, significantly, to the development procedures of modern economies.
The 3G systems will include a location service, so one natural terminal type for 3G is a navigation device. There already exists at least one attempt to provide something like this, namely the Esc! phone from Benefon. It includes a big display, and it can download maps from the network. The location of the phone can be seen from the displayed map. In the future we will also see electronic tracking device that include 2G or 3G communication chips. Navigational devices can take many forms. A hiker in the forest would probably want to have a small lightweight navigation device with only the basic voice call functionality. When outside the 3G coverage, the location data could be provided by the GPS system. Hikers often have specialized needs for their map applications, which are served well with modern GPS terminals. A truck may also include a tracking device that monitors the movements of the vehicle and provides a navigation aid for the driver. Here the weight or the power consumption of the device is not an issue, but the device has to be easy to use. It should not disturb the driver in his main task, which is driving. All such functions, which can be automated, should be implemented. Any necessary input to the device should be done in a way that does not require unnecessary work, for example, via speech recognition.
Most passenger cars will probably include some kind of navigation device in a few years’ time. Similarly here, the weight, the size, or the power consumption of the device is not an issue. The same device probably scans for all traffic announcements from the radio waves, as well as from 3G cell broadcast service (CBS). If traffic jams are detected, the device proposes an alternative route. All input should be possible via speech recognition, and possibly also the output via speech generation. It will be possible to make hands-free voice calls via this device. The existence of special navigation terminals does not exclude the use of navigation applications in standard mainstream terminals. But for certain special needs, a purpose-built navigation terminal is probably the right solution. Privacy issues must be solved before tracking devices for people enter widespread use. Who has the right to access the location data and when?
Comments
Post a Comment